Home Nature A cold, massive, rotating disk galaxy 1.5 billion years after the Big...

A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang




  • 1.

    Rees, M. J. & Ostriker, J. P. Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 179, 541–559 (1977).




  • 2.

    Fall, S. M. & Efstathiou, G. Formation and rotation of disc galaxies with haloes. Mon. Not. R. Astron. Soc. 193, 189–206 (1980).




  • 3.

    Kereš, D., Katz, N., Weinberg, D. H. & Davé, R. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005).




  • 4.

    Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009).




  • 5.

    Hodge, J. A. et al. Evidence for a clumpy, rotating gas disk in a submillimeter galaxy at z = 4. Astrophys. J. 760, 11 (2012).




  • 6.

    Smit, R. et al. Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8. Nature 553, 178–181 (2018).




  • 7.

    Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. Mon. Not. R. Astron. Soc. 467, 179–207 (2017).




  • 8.

    Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous disks across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).




  • 9.

    Ade, P. A. R. et al. (Planck Collaboration) Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).




  • 10.

    Förster Schreiber, N. M. et al. The SINS Survey: SINFONI integral field spectroscopy of z ~ 2 star-forming galaxies. Astrophys. J. 706, 1364–1428 (2009).




  • 11.

    Price, S. H. et al. The MOSDEF Survey: dynamical and baryonic masses and kinematic structures of star-forming galaxies at 1.4 ≤ z ≤ 2.6. Astrophys. J. 819, 80 (2016).




  • 12.

    Genzel, R. et al. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature 543, 397–401 (2017).




  • 13.

    Neeleman, M. et al. [C ii] 158-μm emission from the host galaxies of damped Lyman-alpha systems. Science 355, 1285–1288 (2017).




  • 14.

    Neeleman, M., Kanekar, N., Prochaska, J. X., Rafelski, M. A. & Carilli, C. L. [C ii] 158-μm emission from z ~ 4 H i absorption-selected galaxies. Astrophys. J. 870, L19 (2019).




  • 15.

    de Blok, W. J. G. et al. High-resolution rotation curves and galaxy mass models from THINGS. Astron. J. 136, 2648–2719 (2008).




  • 16.

    Burkert, A. et al. High-redshift star-forming galaxies: angular momentum and baryon fraction, turbulent pressure effects, and the origin of turbulence. Astrophys. J. 725, 2324–2332 (2010).




  • 17.

    Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).




  • 18.

    Goldreich, P. & Lynden-Bell, D. I. Gravitational stability of uniformly rotating disks. Mon. Not. R. Astron. Soc. 130, 97 (1965).




  • 19.

    Elmegreen, B. G., Bournaud, F. & Elmegreen, D. M. Bulge formation by the coalescence of giant clumps in primordial disk galaxies. Astrophys. J. 688, 67–77 (2008).




  • 20.

    Beuther, H. et al. Carbon in different phases ([C ii], [C i], and CO) in infrared dark clouds: cloud formation signatures and carbon gas fractions. Astron. Astrophys. 571, A53 (2014).




  • 21.

    Riechers, D. A. et al. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013).




  • 22.

    de Blok, W. J. G. et al. Comparing [C ii], H i, and CO dynamics of nearby galaxies. Astron. J. 152, 51 (2016).




  • 23.

    Croxall, K. V. et al. The origins of [C ii] emission in local star-forming galaxies. Astrophys. J. 845, 96 (2017).




  • 24.

    Cormier, D. et al. The Herschel Dwarf Galaxy Survey. II. Physical conditions, origin of [C ii] emission, and porosity of the multiphase low-metallicity ISM. Astron. Astrophys. 626, A23 (2019).




  • 25.

    Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).




  • 26.

    Gullberg, B. et al. The dust and [C ii] morphologies of redshift ~4.5 sub-millimeter galaxies at ~200 pc resolution: the absence of large clumps in the interstellar medium at high-redshift. Astrophys. J. 859, 12 (2018).




  • 27.

    Jones, M. G., Haynes, M. P., Giovanelli, R. & Moorman, C. The ALFALFA H i mass function: a dichotomy in the low-mass slope and a locally suppressed ‘knee’ mass. Mon. Not. R. Astron. Soc. 477, 2–17 (2018).


  • 28.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI Vol. 376 (eds Shaw, R. A. et al.) 127 (2007).




  • 29.

    Brown, A. G. A. et al. (Gaia Collaboration) Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).




  • 30.

    Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996).




  • 31.

    Kron, R. G. Photometry of a complete sample of faint galaxies. Astrophys. J. Suppl. 43, 305–325 (1980).




  • 32.

    da Cunha, E. et al. On the effect of the cosmic microwave background in high-redshift (sub-)millimeter observations. Astrophys. J. 766, 13 (2013).




  • 33.

    Calzetti, D. et al. The calibration of monochromatic far-infrared star formation rate indicators. Astrophys. J. 714, 1256–1279 (2010).




  • 34.

    Lonsdale Persson, C. J. & Helou, G. On the origin of the 40–120 micron emission of galaxy disks: a comparison with Hα fluxes. Astrophys. J. 314, 513–524 (1987).




  • 35.

    Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012).




  • 36.

    De Looze, I. et al. The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types. Astron. Astrophys. 568, A62 (2014).




  • 37.

    Herrera-Camus, R. et al. [C ii] 158-μm emission as a star formation tracer. Astrophys. J. 800, 1 (2015).




  • 38.

    Dessauges-Zavadsky, M. et al. Molecular gas content in strongly lensed z ~ 1.5–3 star-forming galaxies with low infrared luminosities. Astron. Astrophys. 577, A50 (2015).




  • 39.

    Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).




  • 40.

    Daddi, E. et al. Very high gas fractions and extended gas reservoirs in z = 1.5 disk galaxies. Astrophys. J. 713, 686–707 (2010).




  • 41.

    Scoville, N. et al. The evolution of interstellar medium mass probed by dust emission: ALMA observations at z = 0.3–2. Astrophys. J. 783, 84 (2014).




  • 42.

    Zanella, A. et al. The [C ii] emission as a molecular gas mass tracer in galaxies at low and high redshifts. Mon. Not. R. Astron. Soc. 481, 1976–1999 (2018).




  • 43.

    Bañados, E. et al. The z = 7.54 quasar ULAS J1342+0928 is hosted by a galaxy merger. Astrophys. J. 881, L23 (2019).




  • 44.

    Neeleman, M. et al. Resolved [C ii] emission from z ~ 6 quasar host-companion galaxy pairs. Astrophys. J. 882, 10 (2019).




  • 45.

    Venemans, B. P. et al. 400 pc imaging of a massive quasar host galaxy at a redshift of 6.6. Astrophys. J. 874, L30 (2019).




  • 46.

    Bird, J. C. et al. Inside out and upside down: tracing the assembly of a simulated disk galaxy using mono-age stellar populations. Astrophys. J. 773, 43 (2013).




  • 47.

    Simons, R. C. et al. z ~ 2: an epoch of disk assembly. Astrophys. J. 843, 46 (2017).




  • 48.

    Di Teodoro, E. M. & Fraternali, F. 3DBAROLO: a new 3D algorithm to derive rotation curves of galaxies. Mon. Not. R. Astron. Soc. 451, 3021–3033 (2015).




  • 49.

    Wang, R. et al. Star formation and gas kinematics of quasar host galaxies at z ~ 6: new insights from ALMA. Astrophys. J. 773, 44 (2013).




  • 50.

    Walter, F., Brinks, E., Duric, N. & Klein, U. A dynamical analysis of the H ii galaxy ii Zwicky 33 and its low surface brightness companion. Astron. J. 113, 2031–2045 (1997).




  • 51.

    Ho, L. C. The CO Tully–Fisher relation and implications for the host galaxies of high-redshift quasars. Astrophys. J. 669, 821–829 (2007).




  • 52.

    Decarli, R. et al. An ALMA [C ii] survey of 27 quasars at z > 5.94. Astrophys. J. 854, 97 (2018).

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Must Read

    Single molecules keep to the straight and narrow – Physics World

    Precisely sending and receiving single molecules. Courtesy: L Grill A change in the position of a single molecule can determine the outcome of a chemical...

    Goldman questions the future and purpose of OPEC+ ahead of a critical meeting

    Saudi Minister of Energy Abdulaziz bin Salman speaks during a media briefing at the King Abdullah Petroleum Studies and Research Center (KAPSARC) in Riyadh...

    World’s first tradable carbon token is set to democratize access to the most important new asset class for generations

    Universal Carbon is the world’s first retail-accessible carbon credit token. Each Token represents one year-tonne of CO2 or equivalent reductions from certified REDD+ voluntary...

    The demons and devils that haunt scientists’ imaginations

    Physicist James Clerk Maxwell envisaged a demon that could...

    Alok Sharma ‘overloaded with day job’ to juggle UN summit role

    Former Conservative PM David Cameron .css-yidnqd-InlineLink:link{color:#3F3F42;}.css-yidnqd-InlineLink:visited{color:#696969;}.css-yidnqd-InlineLink:link,.css-yidnqd-InlineLink:visited{font-weight:bolder;border-bottom:1px solid #BABABA;-webkit-text-decoration:none;text-decoration:none;}.css-yidnqd-InlineLink:link:hover,.css-yidnqd-InlineLink:visited:hover,.css-yidnqd-InlineLink:link:focus,.css-yidnqd-InlineLink:visited:focus{border-bottom-color:currentcolor;border-bottom-width:2px;color:#B80000;}@supports (text-underline-offset:0.25em){.css-yidnqd-InlineLink:link,.css-yidnqd-InlineLink:visited{border-bottom:none;-webkit-text-decoration:underline #BABABA;text-decoration:underline #BABABA;-webkit-text-decoration-thickness:1px;text-decoration-thickness:1px;-webkit-text-decoration-skip-ink:none;text-decoration-skip-ink:none;text-underline-offset:0.25em;}.css-yidnqd-InlineLink:link:hover,.css-yidnqd-InlineLink:visited:hover,.css-yidnqd-InlineLink:link:focus,.css-yidnqd-InlineLink:visited:focus{-webkit-text-decoration-color:currentcolor;text-decoration-color:currentcolor;-webkit-text-decoration-thickness:2px;text-decoration-thickness:2px;color:#B80000;}}turned down the chance to head the conference, which is due to take place...