Values encoded in orbitofrontal cortex are causally related to economic choices

Values encoded in orbitofrontal cortex are causally related to economic choices

  • 1.

    Niehans, J. A History of Economic Theory: Classic Contributions, 1720–1980 (Johns Hopkins Univ. Press, 1990).

  • 2.

    Kreps, D. M. A Course in Microeconomic Theory (Princeton Univ. Press, 1990).

  • 3.

    Kahneman, D. & Tversky, A. (eds) Choices, Values and Frames (Russell Sage Foundation–Cambridge Univ. Press, 2000).

  • 4.

    Camerer, C. F., Loewenstein, G. & Prelec, D. Neuroeconomics: how neuroscience can inform economics. J. Econ. Lit. 43, 9–64 (2005).

    Article  Google Scholar 

  • 5.

    Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Roesch, M. R. & Olson, C. R. Neuronal activity in primate orbitofrontal cortex reflects the value of time. J. Neurophysiol. 94, 2457–2471 (2005).

    Article  PubMed  Google Scholar 

  • 7.

    Kennerley, S. W., Dahmubed, A. F., Lara, A. H. & Wallis, J. D. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21, 1162–1178 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Pastor-Bernier, A., Stasiak, A. & Schultz, W. Orbitofrontal signals for two-component choice options comply with indifference curves of Revealed Preference Theory. Nat. Commun. 10, 4885 (2019).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Hare, T. A., O’Doherty, J., Camerer, C. F., Schultz, W. & Rangel, A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J. Neurosci. 28, 5623–5630 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Padoa-Schioppa, C. Neuronal origins of choice variability in economic decisions. Neuron 80, 1322–1336 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Conen, K. E. & Padoa-Schioppa, C. Neuronal variability in orbitofrontal cortex during economic decisions. J. Neurophysiol. 114, 1367–1381 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Rich, E. L. & Wallis, J. D. Decoding subjective decisions from orbitofrontal cortex. Nat. Neurosci. 19, 973–980 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Roesch, M. R. & Olson, C. R. Neuronal activity related to anticipated reward in frontal cortex: does it represent value or reflect motivation? Ann. NY Acad. Sci. 1121, 431–446 (2007).

    ADS  Article  Google Scholar 

  • 14.

    Schultz, W. Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95, 853–951 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76, 412–427 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Stalnaker, T. A., Cooch, N. K. & Schoenbaum, G. What the orbitofrontal cortex does not do. Nat. Neurosci. 18, 620–627 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Cohen, M. R. & Newsome, W. T. What electrical microstimulation has revealed about the neural basis of cognition. Curr. Opin. Neurobiol. 14, 169–177 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Clark, K. L., Armstrong, K. M. & Moore, T. Probing neural circuitry and function with electrical microstimulation. Proc. R. Soc. Lond. B 278, 1121–1130 (2011).

    Google Scholar 

  • 19.

    Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Murasugi, C. M., Salzman, C. D. & Newsome, W. T. Microstimulation in visual area MT: effects of varying pulse amplitude and frequency. J. Neurosci. 13, 1719–1729 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Kuwabara, M., Kang, N., Holy, T. E. & Padoa-Schioppa, C. Neural mechanisms of economic choices in mice. eLife 9, e49669 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Wolff, S. B. & Ölveczky, B. P. The promise and perils of causal circuit manipulations. Curr. Opin. Neurobiol. 49, 84–94 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Padoa-Schioppa, C. Range-adapting representation of economic value in the orbitofrontal cortex. J. Neurosci. 29, 14004–14014 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Kobayashi, S., Pinto de Carvalho, O. & Schultz, W. Adaptation of reward sensitivity in orbitofrontal neurons. J. Neurosci. 30, 534–544 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Rustichini, A., Conen, K. E., Cai, X. & Padoa-Schioppa, C. Optimal coding and neuronal adaptation in economic decisions. Nat. Commun. 8, 1208 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Ballesta, S. & Padoa-Schioppa, C. Economic decisions through circuit inhibition. Curr. Biol. 29, 3814–3824 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Conen, K. E. & Padoa-Schioppa, C. Partial adaptation to the value range in the macaque orbitofrontal cortex. J. Neurosci. 39, 3498–3513 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Cisek, P. Making decisions through a distributed consensus. Curr. Opin. Neurobiol. 22, 927–936 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Padoa-Schioppa, C. & Conen, K. E. Orbitofrontal cortex: a neural circuit for economic decisions. Neuron 96, 736–754 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Rustichini, A. & Padoa-Schioppa, C. A neuro-computational model of economic decisions. J. Neurophysiol. 114, 1382–1398 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Wong, K. F. & Wang, X. J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Merrill, D. R., Bikson, M. & Jefferys, J. G. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Kim, S. et al. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex. Proc. Natl Acad. Sci. USA 112, 15202–15207 (2015).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Lee, S. W., Eddington, D. K. & Fried, S. I. Responses to pulsatile subretinal electric stimulation: effects of amplitude and duration. J. Neurophysiol. 109, 1954–1968 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Hussin, A. T., Boychuk, J. A., Brown, A. R., Pittman, Q. J. & Teskey, G. C. Intracortical microstimulation (ICMS) activates motor cortex layer 5 pyramidal neurons mainly transsynaptically. Brain Stimul. 8, 742–750 (2015).

    Article  Google Scholar 

  • 37.

    Tolias, A. S. et al. Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron 48, 901–911 (2005).

    CAS  Article  Google Scholar 

  • 38.

    Stoney, S. D. Jr, Thompson, W. D. & Asanuma, H. Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J. Neurophysiol. 31, 659–669 (1968).

    Article  Google Scholar 

  • 39.

    Arsiero, M., Lüscher, H. R., Lundstrom, B. N. & Giugliano, M. The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J. Neurosci. 27, 3274–3284 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    La Camera, G., Giugliano, M., Senn, W. & Fusi, S. The response of cortical neurons to in vivo-like input current: theory and experiment. I. Noisy inputs with stationary statistics. Biol. Cybern. 99, 279–301 (2008).

    Article  PubMed  Google Scholar 

  • 41.

    Ethier, C., Brizzi, L., Darling, W. G. & Capaday, C. Linear summation of cat motor cortex outputs. J. Neurosci. 26, 5574–5581 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Griffin, D. M., Hudson, H. M., Belhaj-Saïf, A. & Cheney, P. D. Hijacking cortical motor output with repetitive microstimulation. J. Neurosci. 31, 13088–13096 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Van Acker, G. M. III et al. Effective intracortical microstimulation parameters applied to primary motor cortex for evoking forelimb movements to stable spatial end points. J. Neurophysiol. 110, 1180–1189 (2013).

    Article  PubMed  PubMed Central  Google Scholar